Nonintrusive reduced order model for parametric solutions of inertia relief problems

نویسندگان

چکیده

The Inertia Relief (IR) technique is widely used by industry and produces equilibrated loads allowing to analyze unconstrained systems without resorting the more expensive full dynamic analysis. main goal of this work develop a computational framework for solution parametric structural problems with IR Proper Generalized Decomposition (PGD) method. First, method formulated in setting both material geometric parameters. A reduced order model using encapsulated PGD suite then developed solve problem, circumventing so-called curse dimensionality. With just one offline computation, proposed PGD-IR scheme provides vademecum that contains all possible solutions predefined range approach nonintrusive it therefore be integrated commercial finite element (FE) packages. applicability potential shown three-dimensional test case complex industrial case. first example highlight numerical properties scheme, whereas second demonstrates shows possibility integrate within FE package. In addition, last use generalized multi-objective optimization setting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parametric Reduced-Order Models

We address the problem of propagating input uncertainties through a computational fluid dynamics model. Methods such as Monte Carlo simulation can require many thousands (or more) of computational fluid dynamics solves, rendering them prohibitively expensive for practical applications. This expense can be overcome with reduced-order models that preserve the essential flow dynamics. The specific...

متن کامل

Numerical Simulation and Parametric Reduced Order Modeling of the Natural Convection of Water-Copper Nanofluid

In this article, a coupled computational framework is presented for the numerical simulation of mass transfer under the effects of natural convection phenomena in a field contains water-copper Nano-fluid. This CFD model is build up based on accurate algorithms for spatial derivatives and time integration. The spatial derivatives have been calculated using first order upwind and second order cen...

متن کامل

Existence of positive solutions for fourth-order boundary value problems with three- point boundary conditions

In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...

متن کامل

Existence and uniqueness of solutions for p-laplacian fractional order boundary value problems

In this paper, we study sufficient conditions for existence and uniqueness of solutions of three point boundary vale problem for p-Laplacian fractional order differential equations. We use Schauder's fixed point theorem for existence of solutions and concavity of the operator for uniqueness of solution. We include some examples to show the applicability of our results.

متن کامل

Reduced order methods for uncertainty quantification problems

This work provides a review on reduced order methods in solving uncertainty quantification problems. A quick introduction of the reduced order methods, including proper orthogonal decomposition and greedy reduced basis methods, are presented along with the essential components of general greedy algorithm, a posteriori error estimation and Offline-Online decomposition. More advanced reduced orde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal for Numerical Methods in Engineering

سال: 2021

ISSN: ['0029-5981', '1097-0207']

DOI: https://doi.org/10.1002/nme.6702